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Abstract

This paper provides a two-dimensional fluctuation splitting scheme for unsteady hyperbolic problems which achieves
third-order accuracy in both space and time. For a scalar conservation law, the sufficient conditions for a stable fluctuation
splitting scheme to achieve a prescribed order of accuracy in both space and time are derived. Then, using a quadratic
space approximation of the solution over each triangular element, based on the reconstruction of the gradient at the three
vertices, and a four-level backward discretization of the time derivative, an implicit third-order-accurate scheme is
designed. Such a scheme is extended to the Euler system and is validated versus well-known scalar-advection problems
and inviscid discontinuous flows.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Fluctuation splitting (FS) schemes using a compact stencil have been developed and applied successfully for
the last 15 years to compute a wide range of compressible steady flows with shocks [1–9]. The FS (also called
residual distribution) approach is based on a cell-vertex tessellation of the computational domain and on a
continuous reconstruction of the solution over linear (triangular/tetrahedral) elements. Only recently, the
properties of these schemes have been studied also on quadrilateral meshes [10,11]. The method is based on
three fundamental steps: (i) evaluating the residual, namely, the flux balance over each computational cell;
(ii) distributing the residual contributions (signals) among the vertices of the cell using suitable coefficients;
(iii) updating the solution at each node by summing up all contributions from the triangles sharing that node.
More recently, attention has been paid to generalizing FS schemes to unsteady flows, a non-trivial task, inso-
far as a consistent mass matrix is needed to achieve an order of accuracy higher than one. Several approaches
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2006.07.027

* Corresponding author. Tel.: +39 0805963226; fax: +39 0805963411.
E-mail addresses: g.rossiello@poliba.it (G. Rossiello), depalma@poliba.it (P. De Palma), pascazio@poliba.it (G. Pascazio),

napolita@poliba.it (M. Napolitano).

mailto:g.rossiello@poliba.it
mailto:depalma@poliba.it
mailto:pascazio@poliba.it
mailto:napolita@poliba.it


G. Rossiello et al. / Journal of Computational Physics 222 (2007) 332–352 333
have been pursued by different research groups to design second-order-accurate FS schemes [12–16]. Ferrante
and Deconinck [13] employed a flux-corrected transport (FCT) procedure [17] applied to the triangle signals in
combination with a Crank–Nicolson time integration. More recently, Csı́k et al. [15] and Abgrall and Mezine
[16] proposed two implicit approaches in the framework of space–time residual-distribution schemes, extend-
ing non-linear FS schemes to continuous space–time elements. Such schemes are successful in eliminating spu-
rious oscillations but cannot drive the residual to machine-zero in the iterative procedure. In Ref. [18], the
authors provided an alternative implicit scheme based on a dual-time-stepping procedure and a general for-
mulation of the consistent mass matrix, using a new limiting procedure to achieve monotone solutions. Such
a procedure is similar to the FCT one, insofar as it allows to control the solution locally, so as to avoid the
creation of spurious extrema; more importantly, it is employed at each node, after collecting the residual con-
tributions from the neighboring elements, rather than at each triangle. In this way, the limiting procedure does
not prevent the residual from reaching machine-zero (a feature which is fundamental for the use of any iter-
ative solver) and may be employed in conjunction with any residual distribution scheme. On the other hand,
with respect to the non-linear schemes of [15,16], this FCT-like approach needs the evaluation of two solutions
(lower-order and higher-order ones) at each time step.

The aim of the present work is to provide a stable FS scheme with third-order accuracy in space and time, a
goal which is being pursued also by other research groups. The basic step to increase the order of accuracy in
space beyond two is to increase the degree of the solution approximation over each element (which is linear for
a second-order-accurate scheme). This can be achieved following two strategies: (i) employing more general
Lagrangian elements with a higher number of degrees of freedom (more than three), as proposed in [19,20];
(ii) reconstructing the gradient of the solution at the three vertices of each element using the value at the sur-
rounding cells [21,22]. Concerning the time accuracy, one can either reconstruct the solution in space and time
[19,20] or discretize the time derivative by suitable finite differences and then integrate it in space [21,22,18].
The sufficient conditions for an FS scheme to be (r + 1)th-order accurate in the case of steady problems have
been derived in [19]. On the other hand, for unsteady problems various error estimates have been provided in
the recent literature, without any rigorous proof, which are inconsistent [16,23,20]. Therefore, in this paper,
the procedure proposed in [19] for steady problems is generalized to unsteady ones so as to provide the correct
sufficient conditions for the accuracy of an FS scheme to achieve order (r + 1) in space and time, in the case of
a finite difference discretization of the time derivative as well as in the case of a space–time approach. Then, a
third-order-accurate scheme is proposed, in which the desired space accuracy is achieved by reconstructing the
gradient of the solution at the vertices of each element and the time one is obtained by an implicit scheme
employing a four-point backward finite difference formula. Such a scheme is validated versus well-known sca-
lar-advection problems. Then, it is extended to the solution of the Euler equations and applied successfully to
compute unsteady inviscid flows with or without discontinuities. Finally, a weak formulation of FS schemes is
provided in the appendix, which shows how such schemes can be recovered within the finite-element
framework.
2. Scalar advection

Consider the two-dimensional scalar conservation law:
ou
ot
þ $ � F ¼ 0 ð1Þ
with u : H! R; H ¼ X� ½0;þ1½;X � R2, F ¼ ðf ðuÞ; gðuÞÞT. For linear advection, the flux vector can be
expressed as F = ku, where k ¼ ða; bÞT is the advection velocity. For a divergence-free advection velocity,
Eq. (1) governs the advection of a scalar quantity.

2.1. Fluctuation splitting schemes

The spacial computational domain, X, is divided into cell-vertex triangular elements, T, the generic node
being labeled i, and time is discretized into levels, labeled n, with increment Dt. For the steady case, explicit
FS schemes are obtained by three main steps:
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(i) evaluating the fluctuation, /T, namely, the flux balance over the cell:
/T ;n ¼
Z

T
$ � FðunÞdX; ð2Þ
(ii) distributing the fluctuation among the nodes j of each triangle:
/T ;n
j ¼ ðb

T
j /T Þn with

X
j2T

bT ;n
j ¼ 1; ð3Þ
where /T ;n
j is the signal from triangle T to node j;

(iii) updating the solution at each node i by summing up all contributions from the triangles sharing that
node:
unþ1
i ¼ un

i �
Dt
jSij

X
T3i

/T ;n
i ; ð4Þ
where |Si| is the area of the dual-cell, Si. In Appendix A a derivation of the FS discretization from the weak
formulation of Eq. (1) is provided. The first two steps, namely, the residual evaluation and distribution, are
essential for the accuracy of the scheme at steady state. Assuming that the unknown varies linearly over each
cell, the discrete fluctuation can be evaluated as:
/T ¼ �
X3

j¼1

kjuj; kj ¼
1

2
k � nj‘j; ð5Þ
nj and ‘j being the inward unit normal to the edge opposing node j and its length, respectively. Distributing
such a fluctuation using bounded coefficients, bT

j , a Linearity Preserving ðLPÞ scheme is obtained, namely,
a scheme which preserves an initial exact linear solution, thus being second-order accurate in space for homo-
geneous advection equations [24]. Several FS schemes have been designed, the final goal being a monotone and
second-order-accurate scheme, an impossible task for any linear scheme [1]. Most of such schemes are of the
(multi-dimensional) upwind type, namely, they are obtained by assigning to each downstream node j, kj P 0, a
fraction bT

j of the cell fluctuation. In the trivial configuration of Fig. 1a, the entire fluctuation is assigned to the
only downstream node and the resulting FS scheme is both positive and second-order accurate. For the non-
trivial configuration of Fig. 1b, different choices of the distribution coefficients bT

j characterize the different
schemes.

For the present study, the following FS schemes are of interest: (1) the N scheme, which is the optimal
first-order-accurate upwind scheme [1]:
/N
j ¼ �kþj ðuj � uinÞ; uin ¼

P3
j¼1k�j ujP3

j¼1k�j
; ð6Þ
where kþj ¼ maxð0; kjÞ and k�j ¼ minð0; kjÞ.
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Fig. 1. Definition of inflow and outflow points: (a) One target case, and (b) two target case.
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(2) The non-upwind FS Lax–Wendroff (LW) scheme [24]:
1 No
surrou
/LW
j ¼ 1

3
þ Dt

2jT j kj

� �
/T ¼ bLW

T ;j /T ; ð7Þ
where |T| is the area of triangle T. Such an explicit scheme achieves second-order accuracy in space and time
[14].

(3) The second-order-accurate upwind control volume (UCV) scheme [24]:
/UCV
j ¼ 1

3
þ 2

3

kjP3
i¼1jkij

 !
/T ¼ bUCV

T ;j /T : ð8Þ
2.2. Accuracy conditions for FS schemes

In this section, the analysis provided in [19] for a steady equation is recalled and then generalized to the case
of an unsteady scalar conservation law, to determine the sufficient conditions for an FS scheme to provide a
truncation error of Oðhrþ1Þ in both space and time. In particular, two approaches are analyzed using either a
space–time discretization or a backward finite-difference formula for the time derivative. Consider the follow-
ing partial differential equation defined in the d dimensional domain X:
LðuÞ ¼ 0; ð9Þ

with the corresponding weak form:
Z

X
uLðuÞdX ¼ 0; ð10Þ
where u(x) is any C1
0 function with compact support in Rd . Given an approximate tessellation of the domain,

with linear dimension h, the numerical method can be written as follows: find ui, "node i 2 X, such that
Z
X

xiL
hðuhðujÞÞdX ¼

X
E3i

UE
i ðujÞ ¼ 0; ð11Þ
where
UE
i ðujÞ ¼

Z
E

xiL
hðuhðujÞÞdX; ð12Þ
xi being a weight function with compact support defining the scheme, the summation is extended to the ele-
ments sharing node i, and uh is a polynomial representation based on the computed nodal values uj, with
j 2 E.1

In order to evaluate the accuracy of the scheme, consider the polynomial representation of the exact solu-
tion of Eq. (10), uh ¼ uhðuex

j Þ, so that the truncation error reads:
TE ¼
X

i

ui

X
E3i

UE
i �

Z
X

uLðuÞdX

�����
�����; ð13Þ
where the second term vanishes since u indicates the exact solution. On the other hand, following [19], the first
term can be written as:
X

i

ui

X
E3i

UE
i ¼

X
i

X
E3i

uiU
E
i ¼

X
i

X
E3i

uiC
E
i þ

X
i

X
E3i

uiðUE
i � CE

i Þ

¼
Z

X
uhLhðuhÞdXþ

X
i

X
E3i

uiðUE
i � CE

i Þ: ð14Þ
tice that uj can be either the values of the degrees of freedom in the element or interpolated values using degrees of freedom from
nding elements.
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In the equation above, the following definitions have been used:
uh ¼
X

i

uiwi; ð15Þ

CE
i ¼

Z
E

wiL
hðuhÞdX; ð16Þ
where wi is the Lagrangian basis function of degree r.
Consider the case of a steady conservation equation:
LðuÞ ¼ $ � FðuÞ ¼ 0; ð17Þ

where u : X ! R, with X � Rd .

According to Eq. (11), the scheme reads:
Z
X

xi$ � FhðuhðujÞÞdX ¼
X
T3i

/T
i ðujÞ ¼ 0: ð18Þ
For an (r + 1)th-order-accurate approximation Fh of F, the first term on the right-hand side of Eq. (14) can be
integrated by parts to give
Z

X
uh$ � FhðuhÞdX ¼

Z
oX

uhðFhðuhÞ � FðuÞÞ � nd‘�
Z

X
$uh � ðFhðuhÞ � FðuÞÞdX ¼ Oðhrþ1Þ: ð19Þ
The second term on the right-hand side of Eq. (14) can be arranged as follows:
X
i

X
T3i

uið/T
i � CT

i Þ ¼
X

T

X
i2T

uið/T
i � CT

i Þ ¼
X

T

X
i2T

ðui � u�Þð/T
i � CT

i Þ

¼
X

T

X
i2T

ðui � u�Þ/T
i �

X
T

X
i2T

ðui � u�ÞCT
i ð20Þ
where u* indicates the value of u in an arbitrary point of triangle T. In Eq. (20), the following equivalence has
been used:
X

i2T

/T
i ¼

X
i2T

CT
i : ð21Þ
Thanks to the above assumption on Fh and integrating by parts over the element, like for Eq. (19), one has:
CT
i ¼

Z
T

wi$ � FhðuhÞdX ¼
Z

oT
wiðFhðuhÞ � FðuÞÞ � nd‘�

Z
T

$wi � ðFhðuhÞ � FðuÞÞdX ¼ OðhrþdÞ: ð22Þ
Since the number of elements is Oðh�dÞ and
ui � u� ¼ OðhÞ; ð23Þ

it turns out that:
X

T

X
i2T

ðui � u�ÞCT
i ¼ Oðhrþ1Þ: ð24Þ
Therefore, from Eq. (20), if /T
i ¼ OðhrþdÞ, then
X

i

X
T3i

uið/T
i � CT

i Þ ¼ Oðhrþ1Þ: ð25Þ
In conclusion, the truncation error is Oðhrþ1Þ if an (r + 1)th-order-accurate approximation Fh is used and if
/T

i ¼ OðhrþdÞ; the latter condition on the signals can be fulfilled provided that a suitable approximation of
the space integral is employed for computing the fluctuation and bounded distribution functions are used.

The analysis above, due to [19], can be extended to a space–time approach by defining
LðuÞ ¼ ou
ot
þ $ � FðuÞ ¼ $t �GðuÞ ¼ 0; ð26Þ
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with $t ¼ o
ot tþ $ and G = (u, F)T, and writing Eq. (11) as
Z

H
xiL

hðuhðujÞÞdH ¼
Z þ1

0

Z
X

xiL
hðuhðujÞÞdXdt ¼

X
E3i

UE
i ðujÞ ¼ 0; ð27Þ
where E and UE
i indicate the space–time elements and signals, respectively, and h is the linear measure of E. All

of the steps taken in Eqs. (14)–(25) can be carried out again with the above definitions, leading to the following
conclusion: the truncation error is Oðhrþ1Þ if an (r + 1)th-order-accurate approximation Gh of G is used and if
UE

i ¼ Oðhrþdþ1Þ. The latter condition on the signals can be fulfilled provided that a suitable approximation of
the space–time integrals is employed for computing the fluctuation and bounded distribution functions are
used. Notice that the requirement on the signals for (r + 1) accuracy in space–time is one order higher than
that for the steady case, since the integration is now performed in the d + 1 domain, see Eq. (27). On the other
hand, the condition on the degree of the polynomial interpolation uh(x, t) remains r in both space and time.

Consider now
LðuÞ ¼ ou
ot
þ $ � FðuÞ ¼ 0 ð28Þ
with a discretization of the time derivative using a backward multi-step scheme. Eq. (11) gives
Z
X

xi
ouhðujÞ

ot
þ $ � FhðuhðujÞÞ

� �
dX ¼

X
T3i

UT
i ðujÞ ¼ 0; ð29Þ
where both terms in the integral must be computed at the same time level, leading in general to an implicit
scheme.

The accuracy conditions are derived again from Eq. (14) where the integration (and distribution) has to be
considered only over the space domain. Therefore, using a constant Dt, proportional to the spacial grid-size h,
the first term on the right-hand side of Eq. (14) reads:
Z

X
uh$ � FhðuhÞdXþ

Z
X

uh ouh

ot
dX ¼

Z
oX

uhðFhðuhÞ � FðuÞÞ � nd‘�
Z

X
$uh � ðFhðuhÞ � FðuÞÞdX

þ
Z

X
uh ouh

ot
� ou

ot

� �
dX ¼ Oðhrþ1Þ; ð30Þ
this result comes from Eq. (19) provided that a reconstruction is used which is (r + 1)th-order-accurate in time
for ouh/ot and (r + 1)th-order-accurate in space for uh. Notice that this conditions are needed in addition to the
one required for Fh.

The second term on the right-hand side of Eq. (14) can be written again as in Eq. (20) where, according to
Eq. (16),
CT
i ¼

Z
T

wi $ � FhðuhÞ þ ouh

ot

� �
dX

¼
Z

oT
wiðFhðuhÞ � FðuÞÞ � nd‘�

Z
T

$wi � ðFhðuhÞ � FðuÞÞdXþ
Z

T
wi

ouh

ot
� ou

ot

� �
dX: ð31Þ
In the equation above, the first two terms on the right-hand side are OðhrþdÞ like for Eq. (22), whereas the last
term is Oðhrþdþ1Þ due to the assumption on the time derivative approximation. Therefore,
CT
i ¼ OðhrþdÞ ð32Þ
and
 X
i

X
T3i

uiðUT
i � CT

i Þ ¼ Oðhrþ1Þ
provided that UT
i ¼ OðhrþdÞ. In conclusion, for the case of the unsteady advection equation, the truncation error

is Oðhrþ1Þ if: an (r + 1)th-order-accurate space reconstruction is used for Fh and uh; an (r + 1)th-order-accurate
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finite difference discretization in time is employed for (ou/ot)i; and UT
i ¼ OðhrþdÞ. The latter condition on the

signals can be fulfilled provided that a suitable approximation of the space integrals of both the unsteady and
steady terms is employed for computing the fluctuation and bounded distribution functions are used. In general,
the signals are to be computed implicitly.

It is noteworthy that the above analysis can be extended straightforwardly to the case of an advection equa-
tion with a source term [25], whose treatment and accuracy requirements are similar to those of the time
derivative.

2.3. Steady problems

2.3.1. Third-order-accurate FS schemes

The analysis described above allows one to design higher-order-accurate space-discretization schemes,
using a cell-residual evaluation based on a higher-degree polynomial reconstruction and a distribution step
with bounded coefficients. The following conditions are sufficient for an FS scheme to achieve third-order
accuracy at steady state for smooth solutions on a grid with spacing h in two dimensions (d = 2, r = 2):

R1: the fluctuation over each triangle T needs to be computed such that
/T ¼
Z

T
$ � FhðuhÞdX ¼ �

Z
oT

FhðuhÞ � nd‘ ¼ 0þ Oðh4Þ;
n being the inward unit vector normal to the edges of T.
R2: the distribution coefficients, bT

i , must be bounded, so that, because of R1, /T
i ¼ bT

i /T ¼ 0þ Oðh4Þ.

Condition R2 can be satisfied using classical FS schemes with bounded coefficients, such as the previously
shown LW and UCV ones [24]. Condition R1 can be fulfilled via a quadratic polynomial reconstruction of u

and a contour integration using only cell-vertex values, the mid-point values on each edge being evaluated by a
reconstruction involving the neighboring cells [21,22]. To this purpose, the gradient of the solution at each
vertex is employed (superscript h is omitted for brevity):
$ui ¼
1P

T3i
jT j�1

X
T3i

jT j�1$uT ; ð33Þ
where the gradient over each element is evaluated as:
$uT ¼
1

2jT j
X3

j¼1

ujnj‘j: ð34Þ
The parabolic function along the edge can thus be defined, allowing one to evaluate the sought mid-point va-
lue as:
umid;j ¼
um þ up

2
þ $um � $up

8
� ðxp � xmÞ; ð35Þ
where m = (j � 1)mod3 and p = (j + 1)mod3. The same formula was derived in Ref. [21] using a least-square-
fitting technique.

The fluctuation is computed using the Simpson formula on each edge; for the case of constant advection
velocity, one has:
/T ¼ �
X3

j¼1

k � nj‘j

6
½um þ 4umid;j þ up�: ð36Þ
In the present study, all computations have been performed using uniform Cartesian grids, the quadrilateral
cells being divided into two triangles by alternating diagonals.
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2.3.2. Steady linear advection of a cosine-shaped function

The numerical accuracy of each scheme has been verified by computing the steady linear advection of a
cosine-shaped function with advection velocity k = (2, 1) in the [0, 1] · [0, 2] domain with periodic boundary
conditions, corresponding to the exact solution u = cos[p(x � 2y)]. Fig. 2 provides a mesh-refinement study
using a sequence of five grids starting from h = Dx = Dy = 1/10. The results obtained using the UCV distri-
bution coefficients in conjunction with the present third-order-accurate scheme (FS3) are shown, together with
those of the second-order-accurate scheme (FS2) employing a linear reconstruction of the solution. The third-
order-accurate scheme provides fourth-order convergence for both the L1 and L1 error-norms, due to a well-
known cancellation property of the Simpson integration formula (36), which integrates exactly polynomials of
degree three.

2.4. Unsteady problems

2.4.1. Third-order-accurate FS schemes

For the case of unsteady problems, an implicit scheme based on a dual-time-stepping technique [26] is
employed:
Fig. 2.
unþ1;kþ1
i ¼ unþ1;k

i � Ds
jSij

X
T3i

ðaT
i fT þ bT

i /T Þnþ1;k ¼ unþ1;k
i � Ds

jSij
X
T3i

ðfT
i þ /T

i Þ
nþ1;k

; ð37Þ
where the explicit Euler integration is used in the dual time s, the superscripts n and k indicate the physical and
fictitious time levels, respectively, and
fT ¼
Z

T

ou
ot

dX; ð38Þ
is the unsteady residual. At each new physical time level n + 1, Eq. (37) is iterated until the solutions at pseu-
do-time levels k + 1 and k coincide within a prescribed tolerance. The time derivative is discretized by a back-
Log [h]

Lo
g 

[L
1
(u

i-
u

iex
)]

, L
og

[L
∞

(u
i-

u
iex

)]

-3 -2 -1 0
-8

-7

-6

-5

-4

-3

-2

-1

L1 - FS2
L∞ - FS2
L1 - FS3
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Mesh-refinement study for the steady scalar problem: L1 and L1 error-norms for the second- and third-order-accurate schemes.
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ward finite-difference formula. In order to obtain a third-order-accurate scheme in space and time, the conclu-
sions of Section 2.2 indicate the following sufficient conditions:

(1) compute the time derivative using a third-order-accurate backward four-level scheme:
ou
ot

� �
i

¼ 11unþ1
i � 18un

i þ 9un�1
i � 2un�2

i

6Dt
; ð39Þ
(2) employ a quadratic reconstruction of the solution over the cell so that the unsteady residual reads:
fT ¼ jT j
3

X3

j¼1

ou
ot

� �
mid;j

; ð40Þ
(3) evaluate the steady residual, /T, using a quadratic reconstruction of the flux as described in the previous
section;

(4) compute the signal so that UT
i ¼ fT

i þ /T
i ¼ 0þ Oðh4Þ.

Considering the simplest choice of distributing the entire residual by means of the same scheme, namely,
using bounded coefficients with aT

i ¼ bT
i [21,22], condition (4) is satisfied but stability problems are experienced

due to insufficient dissipation. Therefore, an alternative distribution procedure is provided here, which shows
good stability properties, while maintaining third-order accuracy in both space and time. Consider a linear
reconstruction (r = 1) of the numerical solution over each element, u‘, and define uq as the difference between
the actual reconstruction of second degree and the linear one, uq = u � u‘. The steady and unsteady residuals

are split into two contributions, /T ¼ /T
‘ þ /T

q and fT ¼ fT
‘ þ fT

q , where /T
‘ and fT

‘ are the fluctuations com-

puted using u‘, and /T
q and fT

q are the higher-order corrections, namely,
/T
q ¼ /T � /T

‘ and fT
q ¼ fT � fT

‘ : ð41Þ
Therefore, the fluctuation can be written as
fT þ /T ¼ fT
‘ þ fT

q þ /T
‘ þ /T

q : ð42Þ
It is noteworthy that /T
‘ and /T

q are Oðh3Þ, since, for a linear reconstruction of the solution, one has
/T
‘ ¼

Z
T

$ � Fðu‘ÞdX ¼ �
Z

oT
Fðu‘Þ � nd‘ ¼ 0þ Oðh3Þ;
moreover, since /T ¼ Oðh4Þ, it follows from Eq. (41) that /T
q ¼ Oðh3Þ. This is confirmed by the numerical re-

sults shown in Fig. 3, which refer to the steady problem described in Section 2.3.2, where the steady fluctuation
is seen to be Oðh5Þ instead of Oðh4Þ for the aforementioned property of Simpson’s rule, in agreement with the
results of Fig. 2. For a linear reconstruction of the solution in space, u‘, one has:
fT
‘ þ /T

‘ ¼
Z

T

ou‘
ot
þ $ � Fðu‘Þ

� �
dX ¼ 0þ Oðh3Þ:
On the other hand, it can be easily demonstrated that fT
q ¼ Oðh4Þ. In fact, as already shown for the last term in

the right-hand side of Eq. (31):
Z
T

ouh

ot
� ou

ot

� �
dX ¼

Z
T

ouh
‘

ot
� ou

ot

� �
dXþ

Z
T

ouh
q

ot
dX ¼ Oðh5Þ: ð43Þ
Since
Z
T

ouh
‘

ot
� ou

ot

� �
dX ¼ Oðh4Þ; ð44Þ
from Eq. (43) it follows that:
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fT
q ¼

Z
T

ouh
q

ot
dX ¼ Oðh4Þ: ð45Þ
Finally, the signals are evaluated as
fT
i þ /T

i ¼ bT
i ðf

T
‘ þ /T

‘ þ /T
q Þ þ

1

3
fT

q : ð46Þ
A slightly increased numerical dissipation renders such a scheme stable and does not alter its order of accu-
racy, since the accuracy requirements are still fulfilled. The distribution coefficients, bT

i , of the UCV scheme
have been used to obtain the present numerical results; it is noteworthy that only negligible differences are
observed using different LP distribution schemes. Notice that the proposed third-order-accurate scheme is
different from the one provided in [21,22] in two points: (i) a third-order-accurate discretization of the time
derivative is employed here instead of the second-order-accurate formula of [21,22]; (ii) the distribution step
is performed according to Eq. (46). Finally, it is noteworthy that the cost of one iteration employing the pro-
posed third-order-accurate scheme is 1.7 and 2.5 times greater than those of the second-order-accurate FS
scheme and of the FS-LW one, respectively.

2.4.2. Accuracy study: advection of a double-sine function

The accuracy of the proposed scheme has been verified by computing the unsteady linear advection of a
double-sine-shaped function (see Fig. 4),
u ¼ sinð2pxÞ sinð2pyÞ;

with k = (1, 2), in the periodic domain [0, 1] · [0, 1] up to t = 1. Four different schemes have been used,
namely:

(1) the explicit second-order-accurate FS Lax–Wendroff scheme (LW);
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(2) the implicit second-order-accurate scheme, obtained by using a consistent mass matrix approach and the
UCV scheme [18] (FS2);

(3) the implicit third-order-accurate scheme with aT
i ¼ bT

i , using the UCV distribution coefficients (FS3up);
(4) the implicit third-order-accurate scheme defined by Eq. (46), using the UCV distribution coefficients

(FS3).

A sequence of five grids has been used, starting from h = Dx = Dy = 1/16 and Dt = 0.02, and halving both
the space and time steps. It is noteworthy that, using the third-order-accurate schemes, about 10 inner itera-
tions are needed to reduce the L1 norm of the residual to 10�10. The L1 and L1 norms of the errors are
reported in Fig. 5, which confirm the accuracy of all schemes. Notice that the curve referring to the simple
aT

i ¼ bT
i scheme is truncated to the 128 · 128 grid, since instabilities arise when refining the mesh further,

which forbid to obtain the numerical solution. Finally, Fig. 6 provides the accuracy of the fluctuations.

The global fluctuation, fT + /T, and the term fT
q are Oðh4Þ, whereas the linear fluctuation, fT

‘ þ /T
‘ , and the

quadratic correction, /T
q , are only Oðh3Þ, in perfect agreement with the previous theoretical findings.

2.4.3. Circular advection of a hump

The circular advection of a smooth hump
u ¼ cos2ð2prÞ for r 6 0:25

0 for r > 0:25

�
; r2 ¼ ðxþ 0:5Þ2 þ y2;
in the square domain [�1, 1]2 with k = (�2py, 2px), is computed using a grid with Dx = Dy = 1/32 and
Dt = 0.0025. The hump follows a circular path and returns to its initial position at t = 1.

Figs. 7–9 provide the solutions obtained using the linear and non-linear versions of the following three
schemes: the Lax–Wendroff scheme (LW); the implicit second-order-accurate scheme (FS2) referred to as
MM-CU in Ref. [18]; the implicit third-order-accurate scheme (FS3) of Eq. (46). The non-linear version of
each scheme is obtained applying the limiting procedure described in Ref. [18], with the explicit N scheme pro-
viding the low-order solution at each step; no change is needed when applying the limiting procedure to the
third-order scheme. It is noteworthy that, using either the linear or the non-linear third-order-accurate
schemes, about 50 inner iterations are needed to reduce the L1 norm of the residual to 10�10. The results pro-
vided in Figs. 7–9 clearly show the superior accuracy of the third-order-accurate schemes: the dispersion error
is lower than that of the second-order-accurate implicit scheme. This appears more clearly from the vertical
cuts through the exact centre of the hump (i.e., x = �0.5):
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� Fig. 10a and b provide the solutions obtained with the above linear and non-linear schemes, respectively,
after one revolution of the hump (t = 1);
� Fig. 11a and b provide the solutions after 5 and 10 revolutions, respectively, obtained using the second- and

third-order-accurate implicit schemes; the lower numerical errors (both dispersive and diffusive) of the latter
scheme are evident.

It is noteworthy that the linear scheme defined with aT
i ¼ bT

i being unstable, cannot provide any solution for
this test case.

3. Euler equations

The extension to systems of conservation laws of the present third-order-accurate implicit scheme is pre-
sented. The Euler equations are written in conservative form as
oU
ot
¼ � oF

ox
� oG

oy
; ð47Þ
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where
U ¼

q

qu

qv

qE

0
BBB@

1
CCCA; F ¼

qu

p þ qu2

quv

quH

0
BBB@

1
CCCA; G ¼

qv

quv

p þ qv2

qvH

0
BBB@

1
CCCA ð48Þ
are the vectors of the conservative variables and of the fluxes in the x and y directions, respectively. In Eq. (48),
q is the density, p is the pressure, u and v are the Cartesian velocity components, E is the specific total internal
energy, and H is the specific total enthalpy.

In order to discretize the system by an FS scheme, Eq. (47) needs to be rewritten in their quasi-linear form:
oU
ot
¼ � A

oU
ox
þ B

oU
oy

� �
; ð49Þ
where A = oF/oU and B = oG/oU are the Jacobian matrices.
The fluctuation over each triangle T is defined as
UT ¼ �
Z

T
A

oU
ox
þ B

oU
oy

� �
dS: ð50Þ
For a second-order-accurate scheme, a linear variation of the parameter vector Z ¼ ffiffiffi
q
p ð1; u; v;HÞT over each

triangle is assumed; therefore the discrete fluctuation can be evaluated analytically, as
UT ¼ � A
oU
ox
þ B

oU
oy

� �
jT j; ð51Þ
the bar indicating suitable cell-averaged values [27]. The fluctuation UT is then rewritten in terms of appropri-
ate fluxes through the sides of each triangle (see [28,3], for details) as
UT ¼ �
X3

j¼1

‘j

2
A � njU j ¼ �

X3

j¼1

KjU j; ð52Þ
where
Kj ¼
1

2
‘jðAnx;j þ Bny;jÞ: ð53Þ
Due to the hyperbolic nature of the system, Kj can be written as
Kj ¼ ðRKKKLKÞj ¼ ðRKKþK LKÞj þ ðRKK�K LKÞj ¼ Kþj þ K�j : ð54Þ
In Eq. (54), RK;j and LK;j are the right and left eigenvector matrices of Kj, whereas KþK;j and K�K;j are the cor-
responding positive and negative eigenvalue matrices. In such a way, it is possible to provide linear matrix FS
schemes for the Euler system, which retain the same properties of the corresponding scalar ones. Introducing
the following vector:
U in ¼
X3

j¼1

K�j

 !�1 X3

j¼1

K�j Uj

 !
; ð55Þ
the linear matrix N scheme [28,3] is obtained as:
UN
j ¼ �Kþj ½U j � U in�: ð56Þ
The matrix LW scheme does not require any splitting and is simply given as
ULW
j ¼ 1

3
I þ Dt

2jT jKj

� �
UT ¼ BT ;LW

i UT : ð57Þ
Finally the matrix UCV scheme is given as
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UUCV
j ¼ 1

3
I þ 2

3

X3

i¼1

jKij
 !�1

Kj

2
4

3
5UT ¼ BT ;UCV

i UT ; ð58Þ
where jKij ¼ ðRK jKK jLKÞi.
In order to extend to the Euler system the third-order-accurate scheme described in the previous section, a

quadratic variation of the parameter vector, Z, is assumed, by reconstructing the gradient $Zi at each vertex,
using Eq. (33). The spacial fluctuation is computed by a contour integral using Simpson’s formula
UT ¼ �
X
j2T

1

6
½FðZmÞ þ 4FðZmid;jÞ þFðZpÞ� � nj‘j;
where F ¼ ðF ;GÞ and the notation of Eq. (36) has been employed. The unsteady residual is obtained by inte-
grating over T, namely
WT ¼
Z

T

oU
ot

dS ¼ jT j
3

X
j2T

oU
ot

� �
mid;j

;

where the time derivatives are evaluated using the third-order-accurate backward four-level scheme of Eq.
(39).

Finally, the distribution step is accomplished using a matrix generalization of the scalar scheme. The dual-
time-stepping formulation of the resulting implicit system to be solved is the following:
Unþ1;kþ1
i ¼ U nþ1;k

i � Ds
jSij

X
T3i

ðWT
i þ UT

i Þ
nþ1;k ¼ Unþ1;k

i � Ds
jSij

X
T3i

ðMT
i WT þ BT

i UT Þnþ1;k
with bounded distribution matrices BT
i and MT

i . Also in the case of the Euler equations, the choice MT
i ¼ BT

i

leads to a third-order-accurate scheme with poor stability. Therefore, the scalar distribution in Eq. (46) has
been generalized to the case of the system as
WT
i þ UT

i ¼ BT
i ðWT

‘ þ UT
‘ þ UT

q Þ þ
1

3
WT

q : ð59Þ
3.1. Results

In this section, numerical results for the Euler equations are discussed; all computations have been per-
formed again using uniform Cartesian grids, the quadrilateral cells being divided into two triangles by alter-
nating diagonals.

Firstly, an accuracy study is performed by computing the advection of a two-dimensional vortex super-
posed to a uniform flow with ðq; u; v; pÞ ¼ ð1; ffiffiffi

c
p
; 0; 1Þ, with c = 1.4. The vortex is given in polar coordinates

(r, h) as:
u� ¼ �r eað1�s2Þ sin h;

v� ¼ ��r eað1�s2Þ cos h;

T � ¼ � ðc� 1Þ�2

4a
e2að1�s2Þ;

ð60Þ
where s = r/0.05, � = 0.3, a = 0.204, and h is the counter-clockwise angle, measured with respect to the hor-
izontal direction. Computations have been performed up to t = 0.2 in the domain [0, 2] · [0, 1], using a se-
quence of five grids, starting from h = Dx = Dy = 1/20 and Dt = 0.0125, and halving both the space and
time steps. In Fig. 12 the scheme is seen to be third-order accurate and it is markedly more accurate than either
the FS Lax–Wendroff explicit scheme or the second-order-accurate implicit one of Ref. [18]. The results refer
to the linear schemes, since the limiting procedure does not affect the accuracy on sufficiently smooth test cases
as verified numerically in [18]. It is noteworthy that, using the third-order-accurate scheme, about 10 inner
iterations are needed to reduce the L1 norm of the residual of the continuity equation to 10�7.
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Then, the third-order-accurate implicit scheme has been tested, in its non-linear version, versus a severe
shock–vortex interaction problem, the results being compared again with those obtained by the second-
order-accurate schemes. The interaction between a stationary shock, with upstream conditions ðq; u; v; pÞ ¼
ð1; 1:1 ffiffiffi

c
p
; 0; 1ÞðM1 ¼ 1:1Þ, and the vortex described in Eq. (60) has been computed in the [0, 2] · [0, 1] domain

using Dx = Dy = 1/100 and Dt = 0.0025. Figs. 13–15 show the pressure contours at times t = 0.2 and t = 0.4,
obtained using the non-linear LW, FS2, and FS3 schemes, respectively. Due to its low dissipative error, the
present third-order-accurate scheme provides a sharp shock-capturing and a well-preserved vortex after the
interaction (t = 0.4). It is noteworthy that, using the third-order-accurate scheme, about 80 inner iterations
are needed to reduce the L1 norm of the residual of the continuity equation to 10�7.

Finally, a very severe test case has been considered, namely, the two-dimensional Riemann problem studied
in [29]. The initial solution consists of four constant values in four quadrants chosen so that each pair of data
gives a single shock wave, the interaction at the corner producing a complex structure, see [29] for details. The
problem has been solved in the square domain [0, 1]2 up to the final time t = 0.8. Also for this test case, using
the third-order-accurate scheme, about 80 inner iterations are needed to reduce the L1 norm of the residual of
the continuity equation to 10�7. Fig. 16 provides the density contours obtained using the non-linear third-
order-accurate scheme on a grid with 100 · 100 and 200 · 200 quad-cells, the time step being equal to
Fig. 13. Shock–vortex interaction: pressure contours (Dp = 0.02) at t = 0.2 (left) and t = 0.4 (right); solution provided by the explicit Lax–
Wendroff scheme.



Fig. 14. Shock–vortex interaction: pressure contours (Dp = 0.02) at t = 0.2 (left) and t = 0.4 (right); solution provided by the implicit
second-order-accurate scheme of [18].

Fig. 15. Shock–vortex interaction: pressure contours (Dp = 0.02) at t = 0.2 (left) and t = 0.4 (right); solution provided by the implicit
third-order-accurate scheme.
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Dt = 0.0032 and Dt = 0.0016, respectively. Furthermore, Fig. 17 shows the solutions obtained using the non-
linear Lax–Wendroff scheme and the implicit non-linear second-order-accurate scheme (FS2-N) on a
200 · 200 grid with Dt = 0.0016 [18]. All schemes provide sharp shocks and contact lines; the Kelvin–Helm-
holtz instability of the slip lines is captured by the second-order-accurate implicit scheme on the 200 · 200 grid
and by the third-order-accurate implicit scheme already on the coarser 100 · 100 grid. It is noteworthy that,
unlike the previous simpler test case, the lower dissipation of the third-order-accurate scheme causes a remark-
able change of the numerical solution with respect to the second-order-accurate scheme. Finally, the robust-
ness of the method is verified by computing the solutions on two refined grids obtained halving twice the space
and time intervals, the density contours being given in Fig. 18.
0 0.25Fig. 16. 2D Riemann problem: density contours ( D q = 0.08) at t = 0.8 for the third-order-accurate scheme using a grid with 100 · 100(left) and 200· 200 (right) quad-cells.
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4. Conclusions

This paper provides a higher-order-accurate genuinely multi-dimensional implicit fluctuation splitting
scheme for two-dimensional unsteady problems, using a dual-time-stepping approach. A polynomial
approximation of the solution over each triangular element, based on the reconstruction of the gradient
at the three vertices, is employed together with a suitable finite difference discretization of the time deriv-
ative. The sufficient conditions for a stable fluctuation splitting scheme to enjoy a prescribed order of
accuracy in both space and time are provided, thus clearing some previous inconsistent findings
[16,23,20]. Then, a third-order-accurate fluctuation splitting scheme is proposed for both the scalar advec-
tion and the Euler equations, which is stable thanks to an appropriate distribution of the fluctuation in
each computational cell and is characterized by very low amplitude and phase errors. When combined
with a recently developed limiting procedure, the proposed implicit scheme provides accurate solutions
also for very complex discontinuous flow problems.
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Appendix A. Weak formulation of FS schemes

Let us introduce the weak formulation of Eq. (1), which embraces both continuous and discontinuous solu-
tions. Consider the space of C1

0 functions with compact support in R2 � ½0;1½; for any scalar function u 2 C1
0,

one has:
Z þ1

0

Z
R2

ou
ot
þ $ � F

� �
udXdt ¼ 0: ðA:1Þ
The explicit updating formula (4) for an FS scheme can be derived starting from Eq. (A.1) considering for each
node i a function u(x, t) = ‘(t)xi(x), with ‘(t) = 1 in the interval [t, t + Dt], otherwise ‘(t) = 0. Eq. (A.1) is
rewritten as
Z tþDt

t

X
T3i

Z
T

ou
ot
þ $ � F

� �
xT

i dXdt ¼ 0; ðA:2Þ
where xT
i is the restriction of xi to the triangle T. Therefore, one has
X
T3i

Z
T

xT
i

Z tþDt

t

ou
ot

dt dXþ
X
T3i

Z tþDt

t

Z
T

xT
i $ � FdXdt ¼ 0: ðA:3Þ
The steady term at the left-hand side of Eq. (A.3) is written as
X
T3i

Z tþDt

t
/T

i ðtÞdt ¼ Dt
X
T3i

/T ;n
i ; ðA:4Þ
where an explicit integration with /T
i ðtÞ ¼ /T ;n

i has been chosen, and the signal to node i is defined as
/T ;n
i ¼

Z
T

xT
i $ � FðunÞdX: ðA:5Þ
Since for an FS scheme one has
X
j2T

/T
j ¼ /T ¼

Z
T

$ � FdX; ðA:6Þ
the following condition must be satisfied by the weight functions over each element:
X
j2T

xT
j ðxÞ ¼ 1: ðA:7Þ
The first term at the left-hand side of Eq. (A.3) is computed as
X
T3i

Z
T
½unþ1 � un�xT

i dX ¼ ½unþ1
i � un

i �
X
T3i

Z
T

xT
i dX ¼ ½unþ1

i � un
i �jSij; ðA:8Þ
where
jSij ¼
X
T3i

Z
T

xT
i dX;
is the area of the dual cell, and the nodal values un
i and unþ1

i are assumed to represent the averages over the dual
cell, Si. Finally, substituting Eqs. (A.4) and (A.8) in Eq. (A.3), the standard updating formula (4) for an FS
scheme is recovered.
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